America Tour: Attribution, prediction, and the causal interpretation problem in epidemiology

Next week I’ll be visiting America to talk in Pittsburgh, Richmond, and twice at Tufts. I do not expect audience overlap so I’ll give the same talk in all venues, with adjustments for audience depending on whether it’s primarily philosophers or epidemiologists I’m talking to. The abstract is below. I haven’t got a written version of the paper that I can share yet but would of course welcome comments at this stage.


Attribution, prediction, and the causal interpretation problem in epidemiology

In contemporary epidemiology, there is a movement, part theoretical and part pedagogical, attempting to discipline and clarify causal thinking. I refer to this movement as the Potential Outcomes Aproach (POA). It draws inspiration from the work of Donald Ruben and, more recently, Judea Pearl, among others. It is most easily recognized by its use of Directed Acycylic Graphs (DAGs) to describe causal situations, but DAGs are not the conceptual basis of the POA in epidemiology. The conceptual basis (as I have argued elsewhere) is a commitment to the view that the hallmark of a meaningful causal claim is that they can be used to make predictions about hypothetical scenarios. Elsewhere I have argued that this commitment is problematic (notwithstanding the clear connections with counterfactual, contrastive and interventionist views in philosophy). In this paper I take a more constructive approach, seeking to address the problem that troubles advocates of the POA. This is the causal interpretation problem (CIP). We can calculate various quantities that are supposed to be measures of causal strength, but it is not always clear how to interpret these quantities. Measures of attributability are most troublesome here, and these are the measures on which POA advocates focus. What does it mean, they ask, to say that a certain fraction of population risk of mortality is attributable to obesity? The pre-POA textbook answer is that, if obesity were reduced, mortality would be correspondingly lower. But this is not obviously true, because there are methods for reducing obesity (smoking, cholera infection) which will not reduce mortality. In general, say the POA advocates, a measure of attributability tells us next to nothing about the likely effect of any proposed public health intervention, rendering these measures useless, and so, for epidemiological purposes, meaningless. In this paper I ask whether there is a way to address and resolve the causal interpretation problem without resorting to the extreme view that a meaningful causal claim must always support predictions in hypothetical scenarios. I also seek connections with the notorious debates about heritability.

Workshop, Helsinki: What do diseases and financial crises have in common?

AID Forum: “Epidemiology: an approach with multidisciplinary applicability”

(Unfamiliar with AID forum? For the very idea and the programme of Agora for Interdisciplinary Debate, see


Mervi Toivanen (economics, Bank of Finland)

Jaakko Kaprio (genetic epidemiology, U of Helsinki)

Alex Broadbent (philosophy of science, U of Johannesburg)

Moderated by Academy professor Uskali Mäki

Session jointly organised by TINT ( the Finnish Epidemiological Society (


Monday 9 February, 16:15-18

University Main Building, 3rd Floor, Room 5

TOPIC: What do diseases and financial crises have in common?

Epidemiology has traditionally been used to model the spreading of diseases in populations at risk. By applying parameters related to agents’ responses to infection and network of contacts it helps to study how diseases occur, why they spread and how one could prevent epidemic outbreaks. For decades, epidemiology has studied also non-communicable diseases, such as cancer, cardiovascular disease, addictions and accidents. Descriptive epidemiology focuses on providing accurate information on the occurrence (incidence, prevalence and survival) of the condition. Etiological epidemiology seeks to identify the determinants be they infectious agents, environmental or social exposures, or genetic variants. A central goal is to identify determinants amenable to intervention, and hence prevention of disease.

There is thus a need to consider both reverse causation and confounding as possible alternative explanations to a causal one. Novel designs are providing new tools to address these issues. But epidemiology also provides an approach that has broad applicability to a number of domains covered by multiple disciplines. For example, it is widely and successfully used to explain the propagation of computer viruses, macroeconomic expectations and rumours in a population over time.

As a consequence, epidemiological concepts such as “super-spreader” have found their way also to economic literature that deals with financial stability issues. There is an obvious analogy between the prevention of diseases and the design of economic policies against the threat of financial crises. The purpose of this session is to discuss the applicability of epidemiology across various domains and the possibilities to mutually benefit from common concepts and methods.


1. Why is epidemiology so broadly applicable?

2. What similarities and differences prevail between these various disciplinary applications?

3. What can they learn from one another, and could the cooperation within disciplines be enhanced?

4. How could the endorsement of concepts and ideas across disciplines be improved?

5. Can epidemiology help to resolve causality?


Alex Broadent, Philosophy of Epidemiology (Palgrave Macmillan 2013)

Alex Broadbent’s blog on the philosophy of epidemiology:

Rothman KJ, Greenland S, Lash TL. Modern Epidemiology 3rd edition.

Lippincott, Philadelphia 2008

D’Onofrio BM, Lahey BB, Turkheimer E, Lichtenstein P. Critical need for family-based, quasi-experimental designs in integrating genetic and social science research. Am J Public Health. 2013 Oct;103 Suppl 1:S46-55. doi:10.2105/AJPH.2013.301252.

Taylor, AE, Davies, NM, Ware, JJ, Vanderweele, T, Smith, GD & Munafò, MR 2014, ‘Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates’. Economics and Human Biology, vol 13., pp. 99-106

Engholm G, Ferlay J, Christensen N, Kejs AMT, Johannesen TB, Khan S, Milter MC, Ólafsdóttir E, Petersen T, Pukkala E, Stenz F, Storm HH. NORDCAN: Cancer Incidence, Mortality, Prevalence and Survival in the Nordic Countries, Version 7.0 (17.12.2014). Association of the Nordic Cancer Registries. Danish Cancer Society. Available from

Andrew G. Haldane, Rethinking of financial networks; Speech by Mr Haldane, Executive Director, Financial Stability, Bank of England, at the Financial Student Association, Amsterdam, 28 April 2009:

Antonios Garas et al., Worldwide spreading of economic crisis:

Christopher D. Carroll, The epidemiology of macroeconomic expectations:

Causation, prediction, epidemiology – talks coming up

Perhaps an odd thing to do, but I’m posting the abstracts of my two next talks, which will also become papers. Any offers to discuss/read welcome!

The talks will be at Rhodes on 1 and 3 October. I’ll probably deliver a descendant of one of them at the Cambridge Philosophy of Science Seminar on 3 December, and may also give a very short version of 1 at the World Health Summit in Berlin on 22 Oct.

1. Causation and Prediction in Epidemiology

There is an ongoing “methodological revolution” in epidemiology, according to some commentators. The revolution is prompted by the development of a conceptual framework for thinking about causation called the “potential outcomes approach”, and the mathematical apparatus of directed acyclic graphs that accompanies it. But once the mathematics are stripped away, a number of striking assumptions about causation become evident: that a cause is something that makes a difference; that a cause is something that humans can intervene on; and that epidemiologists need nothing more from a notion of causation than picking out events satisfying those two criteria. This is especially remarkable in a discipline that has variously identified factors such as race and sex as determinants of health. In this talk I seek to explain the significance of this movement in epidemiology, separate its insights from its errors, and draw a general philosophical lesson about confusing causal knowledge with predictive knowledge.

2. Causal Selection, Prediction, and Natural Kinds

Causal judgements are typically – invariably – selective. We say that striking the match caused it to light, but we do not mention the presence of oxygen, the ancestry of the striker, the chain of events that led to that particular match being in her hand at that time, and so forth. Philosophers have typically but not universally put this down to the pragmatic difficulty of listing the entire history of the universe every time one wants to make a causal judgement. The selective aspect of causal judgements is typically thought of as picking out causes that are salient for explanatory or moral purposes. A minority, including me, think that selection is more integral than that to the notion of causation. The difficulty with this view is that it seems to make causal facts non-objective, since selective judgements clearly vary with our interests. In this paper I seek to make a case for the inherently selective nature of causal judgements by appealing to two contexts where interest-relativity is clearly inadequate to fully account for selection. Those are the use of causal judgements in formulating predictions, and the relation between causation and natural kinds.

Absolute and relative measures – what’s the difference?

I’m re-working a paper on risk relativism in response to some reviewer comments, and also preparing a talk on the topic for Friday’s meeting at KCL, “Prediction in Epidemiology and Healthcare”. The paper originates in Chapter 8 of my book, where I identify some possible explanations for “risk relativism” and settle on the one I think is best. Briefly, I suggest that there isn’t really a principled way of distinguishing “absolute” and “relative” measures, and instead explain the popularity of relative risk by its superficial similarity to a law of physics, and its apparent independence of any given population. These appearances are misleading, I suggest.

In the paper I am trying to develop the suggestion a bit into an argument. Two remarks by reviewers point me in the direction of further work I need to do. One is the question as to what, exactly, the relation between RR and law of nature is supposed to be. Exactly what character am I supposing that laws have, or that epidemiologists think laws have, such that RR is more similar to a law-like statement than, say, risk difference, or population attributable fraction?

The other is a reference to a literature I don’t know but certainly should, concerning statistical modelling in the social sciences. I am referred to a monograph by Achen in 1982, and a paper by Jan Vandebroucke in 1987, both of which suggest – I gather – a deep scepticism about statistical modelling in the social sciences. Particularly thought-provoking is the idea that all such models are “qualitative descriptions of data”. If there is any truth in that, then it is extremely significant, and deserves unearthing in the age of big data, Google Analytics, Nate Silver, and generally the increasing confidence in the possibility of accurately modelling real world situations, and – crucially – generating predictions out of them.

A third question concerns the relation between these two thoughts: (i) the apparent law-likeness of certain measures contrasted with the apparently population-specific, non-general nature of others; and (ii) the limitations claimed for statistical modelling in some quarters contrasted with confidence in others. I wonder whether degree of confidence has anything to do with perceived law-likeness. One’s initial reaction would be to doubt this: when Nate Silver adjusts his odds on a baseball outcome, he surely does not take himself to be basing his prediction on a law-like generalisation. Yet on reflection, he must be basing it on some generalisation, since the move from observed to unobserved is a kind of generalising. What more, then, is there to the notion of a law, than generalisability on the basis of instances? It is surprising how quickly the waters deepen.

Relative Activity in philosepi

Having neglected this blog for several months I find myself suddenly swamped with things to write about. My book has been translated into Korean by Hyundeuk Cheon, Hwang Seung-sik, and Mr Jeon, and judging by their insightful comments and questions they have done a superb and careful job. Next week there is a workshop on Prediction in Epidemiology and Healthcare at KCL, organised by Jonathan Fuller and Luis Jose Flores, which promises to be exciting. Coming up in August is the World Congress of Epidemiology, where I’m giving two talks, hopefully different ones – one on stability for a session on translation and public engagement, and one on the definition of measures of causal strength as part of a session for the next Dictionary of Epidemiology. And I’m working on a paper on risk relativism which has been accepted by Journal of Epidemiology and Community Health subject to revisions in response to the extremely interesting comments of 5 reviewers – I think this is possibly the most rigorous and most useful review process I have encountered. Thus this is a promissory note, by which I hope to commit my conscience to writing here about risk relativism, stability and measures of causal strength in the coming weeks.